Lowering the Overall Charge on TMPyP4 Improves Its Selectivity for G-quadruplex DNA

Document Type


Publication/Presentation Date



Abstract: Ligands that stabilize non-canonical DNA structures called G-quadruplexes (GQs) might have applications in medicine as anti-cancer agents, due to the involvement of GQ DNA in a variety of cancer-related biological processes. Five derivatives of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4), where a N-methylpyridyl group was replaced with phenyl (4P3), 4-aminophenyl (PN3M), 4-phenylamidoproline (PL3M), or 4-carboxyphenyl (PC3M and P2C2M) were investigated for their interactions with human telomeric DNA (Tel22) using fluorescence resonance energy transfer (FRET) assay, and UV-visible and circular dichroism spectroscopies in K+ buffer. The molecules are cationic or zwitterionic with an overall charge of 3+ (4P3, PN3M, and PL3M), 2+ (PC3M) or neutral (P2C2M). All porphyrins except P2C2M stabilize human telomeric DNA in FRET assays by similar to 20 degrees C at 5 eq CD melting experiments suggest that 4P3 is the most stabilizing ligand with a stabilization temperature of 16.8 degrees C at 4 eq. Importantly, 4P3, PC3M and PL3M demonstrate excellent selectivity for quadruplexes, far superior to that of TMPyP4. Binding constants, determined using UV-vis titrations, correlate with charge: triply cationic 4P3, PN3M and PL3M display K-a of 5-9 mu M-1, doubly cationic PC3M displays K-a of 1 mu M-1, and neutral P2C2M displays weak-to-no binding. UV-vis data suggest that binding interactions are driven by electrostatic attractions and that the binding mode may be base-stacking (or end-stacking) judging by the high values of red shift (15-20 nm) and hypochromicity (40-50%). We conclude that lowering the charge on TMPyP4 to 3+ can achieve the desired balance between stabilizing ability, affinity, and high selectivity required for an excellent quadruplex ligand. (C) 2016 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

This document is currently not available here.